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Abstract—Mobile-edge computing (MEC) has emerged as a
promising paradigm for enabling Internet of Things (IoT) devices
to handle computation-intensive jobs. Due to the imperfect
parallelization of algorithms for job processing on servers and the
impact of IoT device mobility on data communication quality in
wireless networks, it is crucial to jointly consider server resource
allocation and IoT device mobility during job scheduling to
fully benefit from MEC, which is often overlooked in existing
studies. By jointly considering job scheduling, server resource
allocation, and IoT device mobility, we investigate the deadline-
constrained job offloading and resource management problem in
MEC with both communication and computation contentions,
aiming to maximize the total energy saved for IoT devices.
For the offline version of the problem, where job information
is known in advance, we formulate it as an Integer Linear
Programming problem and propose an approximation algorithm,
LHJS, with a constant performance guarantee. For the online
version, where job information is only known upon release, we
propose a heuristic algorithm, LBS, that is invoked whenever a
job is released. Finally, we conduct experiments with parameters
from real-world applications to evaluate their performance.

Index Terms—Mobile-Edge Computing, Job Offloading and
Scheduling with Deadlines, Approximation Algorithm

I. INTRODUCTION

Internet of Things (IoT) has emerged as a forefront tech-
nology (Cisco predicts 500 billion IoT devices by 2030 [1])
driven by advancements in hardware, software, and com-
munication technologies [2] such as low-power wide-area
networks, WiFi, and ultra-reliable low-latency communication
of 5G. Concurrently, the evolution of Artificial Intelligence
has led to many computation-intensive IoT applications such
as virtual/augmented reality [3], image/video processing [4],
and object detection in autonomous driving [5]. These appli-
cations, many with rigid timing constraints, pose significant
challenges to IoT devices, which are typically battery-powered
and resource-constrained for compactness and portability [6].

Mobile-Edge Computing (MEC) has emerged as a promis-
ing paradigm enabling IoT devices to effectively support
computation-intensive and time-critical applications. In MEC,
jobs are offloaded by end devices (EDs) to nearby access
points (APs) through wireless networks and then forwarded to
servers via a wired backhaul network for processing. Deploy-
ing servers close to EDs in MEC significantly reduces com-
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munication latency compared to cloud computing, enabling
prompt responses to ED requests. Offloading computation-
intensive jobs to servers conserves EDs’ energy and accelerates
job processing, but also introduces additional latency and en-
ergy consumption for job offloading. Furthermore, considering
the limited communication and computation resources of APs
and servers, respectively, efficient job mapping (to APs and
servers) and resource management (for offloading, processing,
and downloading) strategies in MEC become crucial, espe-
cially for time-critical applications.

Resource management comprises two tasks: resource allo-
cation and job scheduling. Resource allocation is concerned
with the problem of how much resource to allocate to a job,
i.e., in terms of amount of resource units (e.g., number of
processing cores on servers). Job scheduling, on the other
hand, is concerned with the problem of when to schedule the
allocated resources for the jobs so as to meet job deadlines.

In this study, we focus on the problem of job mapping
and resource management for deadline-constrained jobs with
the following considerations. For many applications, includ-
ing those that utilize GPUs, resource utilization efficiency
decreases as computation parallelism increases due to the
imperfect parallelization of algorithms within an application.
Always allocating full server resources to each job can lead to
server resources being underutilized, highlighting the impor-
tance of considering resource allocations during scheduling.
Orthogonally, the wireless network condition varies with ED
mobility. Considering ED mobility during job scheduling can
save energy for EDs, for example, by scheduling job offloading
when the network condition is optimal between EDs and
APs. Although some studies have explored the problem of
job mapping and scheduling for deadline-constrained jobs in
MEC [7]–[27], to our best knowledge, the joint consideration
of job mapping, resource management (including allocations)
and ED mobility is absent.

This study addresses a deadline-constrained job mapping
and resource management problem in MEC with both com-
munication and computation contentions, aiming to maximize
the total energy that can be saved for EDs; we refer to it as
the Energy Maximization Job Scheduling Problem (EMJS).
Offloaded jobs compete with each other for both wireless
bandwidth on APs and computation resource on servers. We
jointly consider computation resource allocation on servers,



job scheduling (for offloading, processing, and downloading)
on APs and servers and ED mobility. Our model incorporates
a versatile job mapping framework, enabling each job to
be offloaded to any of its accessible APs and subsequently
forwarded to one of the capable servers for processing. Upon
completion, the job (result) is relayed back to any of its acces-
sible APs and subsequently downloaded to its ED. Considering
ED mobility, the accessible APs for offloading may differ from
those for downloading. Additionally, each job can only be
processed on servers possessing the resource type demanded
by the job. Each server offers multiple predefined computation
resource allocation options; each job can be allocated any one
of these options resulting in different processing durations.
Notably, in scenarios where MEC comprises only one AP and
a co-located server with each job always being allocated full
server resources, EMJS is equivalent to a three-machine flow
shop problem [28], known as NP-Hard. Hence, considering
options for computation resource allocation and MECs with
several APs and servers, the general EMJS is also NP-Hard.

We consider two versions of EMJS in this paper: online and
offline. In online EMJS, information about each job is only
available upon its release in the system. In contrast, in offline
EMJS, information about all the jobs is available apriori. To
address offline EMJS, we first formulate it as an Integer Lin-
ear Programming (ILP) problem by enumerating all possible
schedule instances, where a schedule instance is a combination
of (i) mapping of jobs to APs and servers, (ii) computation
resource allocation on servers, and (iii) starting times for
offloading, processing, and downloading (jobs are assumed to
be scheduled non-preemptively on each resource). Then, we
present a pseudo-polynomial approximation algorithm, called
Light-Heavy Job Scheduling (LHJS), with a proven constant
approximation ratio. For online EMJS, we propose a heuristic
algorithm, called Load Balanced Job Scheduling (LBS), that
is invoked whenever a job is released in the system. The
contributions of this work are summarized below.

• We address the EMJS in MEC with both communication
and computation contentions, aiming to maximize the
total saved energy for EDs. We jointly consider job
mapping, resource management and ED mobility.

• We formulate the offline EMJS as an ILP problem by
enumerating all schedule instances. Then, we propose, to
the best of our knowledge, a first approximation algorithm
(LHJS) for EMJS with a constant approximation ratio.
LHJS divides all instances into two sets based on compu-
tation resource allocation and schedules them separately.

• For the online version of EMJS, we present a heuristic
scheduling algorithm called LBS by scheduling each job
on the least busy server and allocating the minimum
feasible computation resource to each job.

• We experimentally evaluate LHJS and LBS using profiled
data of real-world applications. Results show that LHJS
outperforms its baseline algorithm [18] by 11.8% in
offline scheduling, and LBS achieves an average of 83.2%
of the optimal saved energy in online scheduling.

II. RELATED WORK

Due to the promising prospects of MEC, research interest
in job mapping and resource management has grown signif-
icantly. Readers seeking a comprehensive overview of this
topic can refer to related surveys [29]–[31]. Research prob-
lems can be categorized into deadline-constrained problems
and deadline-free (or response time minimization) problems.
This section reviews state-of-the-art research on deadline-
constrained job mapping and resource management in MEC.

Depending on whether resource contention is taken into
consideration (either computation or communication), these
studies can be categorized into those (i) with no resource
contention [7]–[9], (ii) only computation contention [10]–[17]
or only communication contention [18]–[20], and (iii) both
communication and computation contentions [21]–[27].

Some studies [10], [12], [14] have jointly considered job
scheduling and computation resource allocation. These studies
considered deploying services or virtual machines (VMs) on
servers for job processing, where multiple services or VMs
could run on the same server simultaneously, provided the
total allocated resources did not exceed the server’s resource
capacity. Jobs were then mapped to and processed by each
service or VM. Under this setup, all jobs mapped to the same
service or VM are allocated the same amount of computation
resource. Moreover, Gao et al. [14] assigned equal amount
of computation resources to a fixed number of VMs for each
server. Unlike these studies, our research considers resource
allocations for each job separately, i.e., a job mapped to a
server can be allocated with any of the offered computation
resource allocation options. Furthermore, none of the above
studies account for communication contention for job offload-
ing/downloading or ED mobility.

Some studies [11], [16], [18], [20] have considered ED
mobility in MEC. These studies assumed that ED trajectories
were predictable, allowing the determination of accessible APs
for jobs and the corresponding network channel status. Sang
et al. [16] assumed that channel noise was a function of
the physical distance between EDs and APs. Sorkhoh et al.
[11] and Zhu et al. [18] divided each wireless network into
several ranges such that the channel gain (or data rate) within
each range remained constant, thereby reducing the accuracy
requirement for trajectory prediction; in our study, we consider
a similar mobility model. However, unlike our work, none
of these studies considered computation resource allocation
during job scheduling. Furthermore, Sorkhoh et al. [11] and
Sang et al. [16] did not consider communication contention,
while Zhu et al. [18] and Huang and Yu [20] did not account
for computation resource contention. Moreover, Zhu et al. [18]
proposed an offline scheduling algorithm with a parameterized
approximation bound, which could be applied to our problem
after some modifications (described in Section VI-A); thus, the
modified algorithm of Zhu et al. is used as the offline baseline
algorithm in evaluating LHJS in our experiments.

Existing solutions to deadline-constrained job mapping and
resource management problems can be classified into heuris-
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Fig. 1. (a) a mobile edge computing system; (b) partition the coverage area of a vAP into three rings; (c) an example of an offloaded job. A job generated
by a vehicle is offloaded to vAP mu when covered by network ring mu1, forwarded to server mp, processed on mp, (result) forwarded to vAP md, and
(result) downloaded from md when covered by network ring md1.

tic algorithms [7]–[9], [11]–[26] and exponential-time exact
algorithms [10], [27]. Among heuristic algorithms, approxi-
mation algorithms [14], [18], [21] offer additional theoretical
guarantees. Unlike our work, Gao et al. [14] did not consider
communication contention, and Meng et al. [21] did not ad-
dress the computation resource allocation during job schedul-
ing and only derived parameterized approximation bounds.
Furthermore, both studies did not consider ED mobility.

Our study jointly considers job mapping, resource man-
agement (including computation resource allocation) and ED
mobility in MEC with both communication and computation
contentions. Furthermore, we propose the first approximation
algorithm with a constant approximation ratio for this problem.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Mobile Edge Computing System Architecture

A MEC comprises EDs, APs, and servers (Fig. 1(a)). A job
can be offloaded by its ED to one of its accessible APs via
a wireless network, and then forwarded to one of its capable
servers (i.e., servers that possess the resource type demanded
by the job) for processing through the backhaul network. After
processing, the job (result) is relayed to one of its accessible
APs and subsequently downloaded from the AP to its ED. Due
to ED mobility, the set of accessible APs of a job may change
over time so that APs used for offloading and downloading
may be different. In this paper, we use discrete time, so that all
the temporal parameters are specified as integers. A notation
summary is provided in Table I.

In a wireless network, the uplink and downlink channels of
each AP are usually separated by a guard band, facilitating
simultaneous data offloading and downloading within the
same wireless network without interference. For analytical
simplicity, we define two virtual APs, referred to as vAPs,
corresponding to each AP such that each vAP exclusively
contains one uplink or downlink channel. Let Mu be the set
of Mu vAPs with uplink channels, and Md be the set of
Md vAPs with downlink channels. Since the channel gain
of wireless networks decreases with the increasing physical
distance between EDs and vAPs [18], for each vAP, we divide
its wireless network coverage area into several rings such
that the channel gains remain unchanged (from a practical

viewpoint) within the same ring (Fig. 1(b)); we use mir to
denote the r-th ring of vAP mi ∈ Mu ∪Md. In this paper,
we consider heterogeneous servers that provide different types
of computation resources, and a job can only be processed on
a server possessing the resource type demanded by the job.
Let Mp be the set of Mp servers.

We refer to a vAP or server in MEC as a machine, and let
M =Mu ∪Mp ∪Md be the set of all machines in MEC,
and let M = max{Mu,Mp,Md}. Let αi denote the resource
capacity of a machine mi ∈M. The bandwidth capacity of a
vAP is measured in MegaHertz (MHz). We consider Orthogo-
nal Frequency Division Multiplexing (OFDM) as the network
access method for EDs, which has been widely used in modern
wireless networks such as WiFi-5 [32], 4G-LTE [33], and 5G
[34]. In OFDM-enabled networks, each channel uses multiple
overlapping but orthogonal subcarriers for data transmission,
and EDs are distinguished based on time segments (in each
time segment, one ED occupies all subcarriers in a channel to
transmit a complete data packet [35]), resulting in sequential
and non-preemptive data transmission in the wireless network.
The computation resource capacity of a server is measured
in computing units which are defined based on the resource
type supported by the server, i.e., the computing unit of a
CPU server is the CPU core, and that of a GPU server is the
streaming multiprocessor. Each server mi ∈ Mp comprises
exactly one resource type (e.g., CPU, GPU, etc.) and provides
a set of resource allocation options Ci for job processing,
where |Ci| ≤ C for some integer C, and each option c ∈ Ci
corresponds to some fraction of αi, i.e., c ∈ (0, 1]. Notably,
servers with multiple resource types can be viewed as multiple
co-located servers, each possessing a single resource type.
Given the potentially significant context switch overhead [36],
we consider non-preemptive job processing. Besides, servers
can run multiple jobs concurrently, provided their combined
resource allocations do not exceed the server’s capacity.

Let N be the set of N jobs to be processed. Each job
nj ∈ N is represented by ⟨θinj , θoutj , γj , δj ,Mp

j , ψj⟩. Here,
θinj is the input data size, θoutj is the output data size, γj is
the release time, and δj is the absolute deadline of job nj .
Both θinj and θoutj are measured in Megabyte (MB). Each job
nj can be processed on a server with the required resource



type; letMp
j be the set of servers where nj can be processed.

Due to the design of network rings, the accuracy requirement
for trajectory estimation is reduced (i.e., we only need to
determine if vehicles are under the coverage of network rings);
thus, the ED trajectories can be estimated by mainstream
navigation applications such as Google Maps [37]. Based on
the estimated trajectory of nj’s ED, the accessible vAPs of nj
can be defined by a set of at most R ring coverage windows
ψj throughout its lifetime [γj , δj ]. Each coverage window
Tir ∈ ψj indicates that nj’s ED is covered by network ring
mir during time window Tir; the starting and ending time slots
of Tir, termed st(Tir) and et(Tir), depend on the estimated
moving speed and direction of nj’s ED. If mir is chosen for
offloading or downloading, we require that the operation must
be completed within Tir. We provide an example of the full
cycle of an offloaded job in Fig. 1(c). Each job can either
be processed locally or on servers. We use dlocj to denote the
local processing duration of job nj , and djic to denote the
processing duration of job nj when it is processed on server
mi with resource allocation option c ∈ Ci. We assume that the
ED of each job nj does not generate other jobs during [γj , δj ]
and γj + dlocj − 1 ≤ δj (ensuring local processing feasibility).

Enabling jobs to be forwarded to different servers via the
wired backhaul network after being offloaded offers advan-
tages in balancing server workloads and mitigating wireless
network coverage limitations. For instance, the servers co-
located with the accessible vAPs of job nj may not possess
the resource type required by nj . We consider the backhaul
network connects vAPs and servers with optical cables and is
enabled with Software Defined Network technology [10]. Such
a backhaul network has enough bandwidth capacity [38] to
support data transmission with no communication contention
and provides a fixed data transmission rate for each link.
Then, given the topology of the backhaul network, the data
forwarding duration between a vAP mi and a server mp can
be defined as a function of the transmitted data size θ. It
comprises the data transmission duration over each link of
the shortest path from vAP mi to server mp; we denote this
function as βip(θ). Note that βip(θ) = βpi(θ) and βii(θ) = 0.

B. Energy Consumption and Timing Model
1) Local Processing: When job nj is processed locally, the

processing duration is dlocj . Let plocj be the processing power.
The energy consumption for processing job nj locally is then
given by elocj = plocj · dlocj .

2) Remote Processing: Suppose job nj starts offloading to
vAP mu at time tuj during ring coverage window Tur. Then, it
is forwarded to server mp and starts processing at time tpj with
resource allocation c ∈ Cp. After processing, job nj (result)
is forwarded to vAP md and starts downloading from md to
nj’s ED at time tdj during ring coverage window Tds. Here,
the subscript u, p, and d (e.g., mu) are used as machine index,
and the superscript u, p, and d (e.g., tuj ) are used to denote
offloading, processing, and downloading.

To ensure machine (vAP and server) capability, we have

Tur ∈ ψj , Tds ∈ ψj , and mp ∈Mp
j . (1)

TABLE I
NOTATION (MAIN PARAMETERS AND VARIABLES)

Notation Definition
Mu the set of Mu vAPs with uplink channels
Mp the set of Mp servers
Md the set of Md vAPs with downlink channels
M M = Mu ∪Mp ∪Md, set of machines (vAPs and servers);

mi ∈ M denotes a machine; M = max{Mu,Mp,Md}
αi the resource capacity of machine mi ∈ M
Ci resource allocation options of server mi ∈ Mp; |Ci| ≤ C

mir r-th network ring of vAP mi ∈ Mu ∪Md

N the set of N jobs, where nj ∈ N denotes a job
θinj input data size of job nj

θoutj output (result) data size of job nj

γj release time of job nj

δj absolute deadline of job nj

∆ ∆ = maxnj∈N δj , total number of time units for scheduling
Mp

j set of servers on which job nj can be processed; Mp
j ⊆ Mp

ψj {Tir, ...}, set of ring coverage windows of job nj ; |ψj | ≤ R
tuj the offloading starting time of job nj

tpj the processing starting time of job nj

tdj the downloading starting time of job nj

duj offloading duration of job nj

dpj processing duration of job nj

ddj downloading duration of job nj

du,pj forwarding duration of job nj ’s input from its offloading vAP
to its processing server

dp,dj
forwarding duration of job nj ’s output from its processing
server to its downloading vAP

esavej saved energy of job nj ’s ED by processing nj on a server
ℓ ℓ≜⟨mu

ℓ ,m
p
ℓ ,m

d
ℓ , I

u
ℓ , I

p
ℓ , I

d
ℓ , c

p
ℓ ⟩ is a schedule instance. mu

ℓ ,
mp

ℓ and md
ℓ are job mappings, Iuℓ , Ipℓ and Idℓ are operation

intervals, and cpℓ is allocated computation resource
e(ℓ) saved energy of schedule instance ℓ
L the set of all schedule instances of all jobs
Lj the set of schedule instances of j
st(T ) start time of time interval/window T
et(T ) end time of time interval/window T

x(ℓ) binary selection variable of instance ℓ

Since job nj cannot start offloading before its release,

γj ≤ tuj . (2)

Based on Shannon’s theorem [39], the data offloading rate is
defined as ηuj = αu · log2(1 + puj · hur/σ2), where αu is the
bandwidth capacity of vAP mu, puj is the offloading power of
ED, hur is the channel gain in network ring mur, and σ is the
noise spectral density. The offloading duration duj and energy
consumption euj are given by duj = θinj /η

u
j and euj = puj · duj .

Furthermore, tuj needs to satisfy

st(Tur) ≤ tuj , and tuj + duj − 1 ≤ et(Tur). (3)

Since there is no bandwidth contention in the backhaul
network, job nj can be immediately forwarded to server
mp after being offloaded. Let du,pj = βup(θ

in
j ) be job nj’s

forwarding duration from vAP mu to server mp. As job nj
cannot start processing before it arrives mp, tpj needs to satisfy

tuj + duj + du,pj ≤ tpj . (4)

Let dpj = djpc denote the processing duration of job nj
on server mp. Once job nj is processed, the result can



be immediately forwarded to its downloading vAP md. Let
dp,dj = βpd(θ

out
j ) denote this forwarding duration from server

mp to vAP md. Job nj cannot start downloading from vAP
md before it arrives at md, and hence tdj needs to satisfy

tpj + dpj + dp,dj ≤ tdj . (5)

Each ED requires a minimum power to ensure the necessary
sensitivity to receive the wireless signal sent from a vAP
[40]. Let pdj be the downloading power of job nj’s ED. Let
ηdj = αd · log2(1+ SNRd) be the data downloading rate of nj ,
where SNRd is the signal-to-noise ratio and depends on vAP
md since it is the data transmitter. Thus, the downloading
duration ddj and energy consumption edj for nj are given
by ddj = θoutj /ηdj and edj = pdj · ddj . Since nj can only be
downloaded during ring coverage window Tds, tdj must satisfy

st(Tds) ≤ tdj , and tdj + ddj − 1 ≤ et(Tds). (6)

To meet the job deadline, tdj also needs to satisfy

tdj + ddj − 1 ≤ δj . (7)

We omit the vAP handover delay for switching from the of-
floading vAP to the downloading vAP (if they are different), as
this delay is typically shorter than the job processing time (i.e.,
the vAP handover can be completed before the job processing
finishes). The saved energy for job nj’s ED by processing job
nj on server mp is defined as esavej = elocj − euj − edj .

C. Problem Formulation

Problem Definition: Let ∆ = maxnj∈N δj . This paper
aims to find a schedule that satisfies machine capability
constraints, resource capacity constraints, and timing con-
straints for all jobs over the ∆ time units to maximize the
total saved energy for EDs; we refer to this problem as the
Energy Maximization Job Scheduling Problem (EMJS). To
solve EMJS, we need to determine the job mapping (where
each job is offloaded, processed and downloaded), computa-
tion resource allocation on server, and the starting times for
each operation (offloading, processing, and downloading). The
machine capability constraint is specified by Eqs. (1), (3) and
(6). The resource capacity constraint ensures that at any given
time instant, the total resource allocated to all the jobs by any
machine does not exceed its capacity. The timing constraints
are specified by Eqs. (2), (4), (5), and (7).

Problem Complexity: When job executions are sequen-
tial on servers (no fractional resource allocation) and the
MEC comprises one offloading vAP, one server and one
downloading vAP, the resulting problem is a three-machine
flow shop problem, known to be NP-Hard and challenging
to be approximated within O(3/ log 3) unless P = NP [28].
Since EMJS considers a more general MEC and multiple
computation resource allocation options, it is at least as hard
as the three-machine flow shop problem.

Definition 1 (Schedule Instance). A schedule instance of
job nj is defined as ℓ ≜ ⟨mu

ℓ ,m
p
ℓ ,m

d
ℓ , I

u
ℓ , I

p
ℓ , I

d
ℓ , c

p
ℓ ⟩, which

represents the scenario where job nj offloads to vAP mu
ℓ in

the operation interval Iuℓ (Iuℓ ≜ [tuj , t
u
j + duj − 1]), executes

on server mp
ℓ with computation resource allocation cpℓ ∈ Cℓ

in the operation interval Ipℓ (Ipℓ ≜ [tpj , t
p
j + dpj − 1]), and

downloads its result from vAP md
ℓ in the operation interval

Idℓ (Idℓ ≜ [tdj , t
d
j + ddj − 1]). Moreover, ℓ needs to satisfy

(i) machine capability constraint: Eqs. (1), (3), and (6).
(ii) timing constraint: Eqs. (2), (4), (5), and (7).

For ease of presentation, we use notation I∗ℓ (likewise m∗
ℓ )

to generically denote any of the three operation intervals
(likewise machines) of ℓ.

Let ℓ be a schedule instance of job nj . Let e(ℓ) = esavej be
the saved energy for nj’s ED when nj is scheduled following
ℓ. For any set of schedule instances S, let e(S) =

∑
ℓ∈S e(ℓ).

For any machine mi and time instant t, let 1i(t, I
∗
ℓ ) be an

indicator function, where 1i(t, I
∗
ℓ ) = 1 if and only if the

operation interval I∗ℓ is active at time t (t ∈ I∗ℓ ) and mi = m∗
ℓ .

In offline EMJS, information about all the jobs is available
apriori. Thus, we can enumerate all possible schedule instances
for each job nj ∈ N . Let L be the set of all possible schedule
instances for all the jobs in N , and Lj be the set of all possible
schedule instances for any job nj . Note that we are only
interested in those schedule instances ℓ with positive e(ℓ); thus,
L and Lj contain only those schedule instances with positive
saved energy. Since each job has at most R ring coverage
windows and each server has at most C resource allocation
options, we have at most NMCR2∆3 schedule instances in L.
Because ∆ depends on the value of δj , the number of schedule
instances in L is pseudo-polynomial to the input size. For
each schedule instance ℓ ∈ L, let xℓ ∈ {0, 1} be the selection
variable of ℓ, where xℓ = 1 if and only if ℓ is selected in the
solution. Then, we formulate offline EMJS as follows.

(EMJS Offline) max
∑
ℓ∈L

e(ℓ) · xℓ (8)

subject to: ∑
ℓ∈L,I∗

ℓ ∈ℓ,
1i(t,I

∗
ℓ )=1

xℓ ≤ 1,∀1 ≤ t ≤ ∆,∀mi ∈Mu ∪Md (8a)

∑
ℓ∈L,1i(t,I

p
ℓ )=1

xℓ · cpℓ ≤ 1,∀1 ≤ t ≤ ∆,∀mi ∈Mp (8b)

∑
ℓ∈Lj

xℓ ≤ 1, ∀nj ∈ N (8c)

xℓ ∈ {0, 1}, ∀ℓ ∈ L (8d)

Eqs. (8a) and (8b) are the resource capacity constraints for
vAPs and servers, respectively. Constraint (8c) guarantees
that at most one schedule instance of each job is selected
in the solution. Note that the machine capability and timing
constraints have already been considered in the definition of
schedule instances. The formulation contains NMCR2∆3

variables and (3M∆ + J) constraints, which is a pseudo-
polynomial of the input size.



IV. AN APPROXIMATION ALGORITHM FOR OFFLINE EMJS

This section presents an approximation algorithm for offline
EMJS, called the Light-Heavy Job Scheduling Algorithm
(LHJS). (For ease of presentation, whenever we mention EMJS
in this section it always refers to the offline version.) For each
schedule instance ℓ ≜ ⟨mu

ℓ ,m
p
ℓ ,m

d
ℓ , I

u
ℓ , I

p
ℓ , I

d
ℓ , c

p
ℓ ⟩ of job nj ,

0 < cpℓ ≤ 1 denotes the computation resource allocation on
server mp

ℓ . We refer to ℓ as a light schedule instance if cpℓ ≤
1
2 ,

and as a heavy schedule instance otherwise. Further, for ease
of presentation, we use c∗ℓ to generically denote the resource
allocation corresponding to any operation interval I∗ℓ in ℓ; if
I∗ℓ = Ipℓ then c∗ℓ = cpℓ , and if I∗ℓ = Iuℓ or Idℓ then c∗ℓ = 1
denoting the full bandwidth allocation for offload/download.
Finally, for a set of operation intervals I, let c(I) =

∑
I∗
ℓ ∈I c

∗
ℓ .

In LHJS (Algorithm 1), we first divide L into two sets: the
set of all light schedule instances LL and the set of all heavy
schedule instances LH . Next, we apply RandRound (Section
IV-A) to obtain a solution for LL and use SortSched (Section
IV-B) to obtain a solution for LH . Finally, we select the
solution with a higher energy saving as the final solution for
EMJS. Here, we use vectors y and z to represent the optimal
fractional solutions of LP problems LIS and HIS, respectively,
to differentiate from the general solution x. Notably, solving
an LP problem with n variables optimally takes time O(n3)
[41], and is much faster than solving an ILP problem, which
takes exponential time. Later in this section, we show that
LHJS achieves a constant approximation ratio for EMJS.

Motivation for LHJS. Simultaneously considering schedule
instances with computation resource allocations spanning 0 to
1 is very challenging to approximate. By scheduling LL and
LH separately, we can obtain two additional properties that
aid in deriving an approximation ratio for EMJS:

(i) When scheduling LL, if ℓ ∈ LL cannot be included in
the solution due to conflict in Ipℓ , then at least 1

2 of
the resource of mp

ℓ has been allocated to other schedule
instances in the solution at some time t ∈ Ipℓ .

(ii) When scheduling LH , since cpℓ > 1
2 for all ℓ ∈ LH ,

jobs cannot be scheduled in parallel on any server in the
solution, i.e., two intervals Ipℓ1 and Ipℓ2 in the solution
cannot overlap if mp

ℓ1
= mp

ℓ2
.

A. The RandRound Algorithm for Light Schedule Instances

This subsection presents a randomized rounding algorithm,
called RandRound, to obtain a feasible scheduling solution for
LL. Based on the formulation of EMJS, we define a relaxed
LP formulation corresponding to LL, called LIS, by relaxing
xℓ into a continuous variable in the range [0, 1].

(LIS) max
∑

ℓ∈LL
e(ℓ) · xℓ (9)

subject to Eqs. (8a), (8b), (8c), and x(ℓ) ≥ 0, ∀ℓ ∈ LL.
We denote the optimal fractional solution of LIS as y. Let
y(Lj) =

∑
ℓ∈Lj

yℓ. Next, we use RandRound (Algorithm 2)
to obtain a feasible scheduling solution for EMJS by rounding
y. Specifically, the function Random(0, 1) in lines 3 and 7
of RandRound samples a value of range [0, 1] independently

Algorithm 1 Light-Heavy Job Scheduling (LHJS)
Input: N , M
Output: S

1: Define L by enumerating all possible schedule instances;
2: Divide L into LL and LH ;
3: Define an LP formulation (LIS) for LL based on EMJS;

let y be an optimal fractional solution of LIS.
4: SL ← RandRound(y);
5: Define an LP formulation (HIS) for LH based on EMJS;

let z be an optimal fractional solution of HIS;
6: SH ← SortSched(z);
7: if e(SL) ≥ e(SH) do S ← SL;

else S ← SH .

Algorithm 2 Randomized Rounding (RandRound)
Input: y (an optimal fractional solution of LIS)
Output: SL

1: N sel ← ∅,Lsel ← ∅, Isel ← ∅,SL ← ∅;
/∗ Step 1: select job nj with probability y(Lj)/κ ∗/

2: for nj ∈ N do
3: val1 ← Random(0, 1);
4: if val1 ≤ y(Lj)/κ do N sel ← N sel ∪ {nj};

/∗ Step 2: select one ℓ with prob. yℓ/y(Lj) for nj ∈ N sel ∗/
5: for nj ∈ N sel do
6: for all ℓ ∈ Lj do ỹℓ ← yℓ/y(Lj);
7: val2 ← Random(0, 1);

/∗ let ℓk be the k-th instance in Lj ∗/
8: if

∑s−1
k=1 ỹℓk < val2 ≤

∑s
k=1 ỹℓk then

9: Lsel ← Lsel ∪ {ℓs};
/∗ Step 3: select operation intervals ∗/

10: for mi ∈M do
11: Iseli ← ∅;
12: Ii ← {I∗ℓ | ℓ ∈ Lsel and ∃t,1i(t, I

∗
ℓ ) = 1};

13: Sort all I∗ℓ ∈ Ii in ascending order of st(I∗ℓ );
14: for I∗ℓ ∈ Ii (from left to right) do
15: I∗ℓ ← {I∗ℓ′ ∈ Iseli | 1m(st(I∗ℓ ), I

∗
ℓ′) = 1};

16: if c∗ℓ + c(I∗ℓ ) ≤ 1 do Iseli ← Iseli ∪ {I∗ℓ };
17: Isel ← Isel ∪ Iseli ;
18: SL ← {ℓ ∈ Lsel | ∀I∗ℓ ∈ ℓ, I∗ℓ ∈ Isel}.

at random, and the value of κ in line 4 of RandRound

is determined in the proof of Theorem 1. Furthermore, we
provide an example for operation interval selection (lines 11–
16) in Fig. 2. In the following, we show that SL obtained
by RandRound is a feasible solution to EMJS, and derive the
approximation ratio for RandRound.

Lemma 1. The output SL of RandRound is a feasible schedul-
ing solution for EMJS.

Proof: In lines 5–9, we choose at most one schedule
instance for each job, so SL satisfies constraint (8b) of EMJS.
In line 16, we only add an operation interval into set Isel
when the resource capacity constraint is not violated. Thus,
SL also satisfies the constraints (8a) and (8b) of EMJS.
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Fig. 2. An example of operation interval selection for server mi ∈ Mp,
where we add Ipℓ5 into Isel

i if cpℓ + c(Ip
ℓ ) ≤ 1.

Theorem 1. Suppose y is an optimal solution to LIS, and SL
is the schedule generated by RandRound. Let κ = 8 (line 4 of
RandRound) and e(y) =

∑
ℓ∈LL

e(ℓ) · yℓ. Then, the expected
value of e(SL) satisfies the condition E[e(SL)] ≥ e(y)/16.

Proof: Let ℓ ≜ ⟨mu
ℓ ,m

p
ℓ ,m

d
ℓ , I

u
ℓ , I

p
ℓ , I

d
ℓ , c

p
ℓ ⟩ be a light

schedule instance of job nj . The probability of ℓ ∈ SL,

Pr[ℓ ∈ SL] = Pr[ℓ ∈ Lsel] · Pr[ℓ ∈ SL | ℓ ∈ Lsel]. (10)

Based on lines 3–9, we have Pr[nj ∈ N sel] = y(Lj)/κ and
Pr[ℓ ∈ Lsel | nj ∈ N sel] = yℓ/y(Lj). Thus, the first term on
the right-hand side (RHS) of Eq. (10),

Pr[ℓ ∈ Lsel] = Pr[nj ∈ N sel] · Pr[ℓ ∈ Lsel | nj ∈ N sel] =
yℓ
κ
. (11)

For the second term on the RHS of Eq. (10),

Pr[ℓ ∈ SL |ℓ ∈ Lsel] = Pr[∀I∗ℓ ∈ ℓ, I∗ℓ ∈ Isel | ℓ ∈ Lsel]

= 1− Pr[∃I∗ℓ ∈ ℓ, I∗ℓ /∈ Isel | ℓ ∈ Lsel]

≥ 1−
∑

I∗
ℓ ∈ℓ Pr[I∗ℓ /∈ Isel | ℓ ∈ Lsel].

(12)

The inequality in Eq. (12) follows from the union bound. Then,
we derive a bound on each term of the summation in Eq. (12).

We first analyze Pr[Iuℓ /∈ Isel | ℓ ∈ Lsel]. When I∗ℓ = Iuℓ ,
c∗ℓ = 1 and the offloading interval cannot overlap with each
other at any vAP in a feasible scheduling solution. Thus,

Pr[Iuℓ /∈ Isel | ℓ ∈ Lsel] (13a)

=Pr[∃Iuℓ′ ∈ Iuℓ , Iuℓ′ ∈ Isel | ℓ ∈ Lsel] (lines 15–16) (13b)

≤
∑

Iu
ℓ′∈Iu

ℓ
Pr[Iuℓ′ ∈ Isel | ℓ ∈ Lsel] (union bound) (13c)

≤
∑

Iu
ℓ′∈Iu

ℓ
Pr[ℓ′ ∈ Lsel | ℓ ∈ Lsel] (line 12) (13d)

=
∑

Iu
ℓ′∈Iu

ℓ
Pr[ℓ′ ∈ Lsel] (line 3) (13e)

=
∑

Iu
ℓ′∈Iu

ℓ

yℓ′
κ ≤

1
κ (Eqs. (11)) (13f)

The last inequality in Eq. (13f) holds due to Eq.(8a) and the
fact that all Iuℓ′ ∈ Iuℓ are active at time st(Iuℓ ). Following a
similar derivation, we have Pr[Idℓ /∈ Isel | ℓ ∈ Lsel] ≤ 1

κ .
Next, we analyze Pr[Ipℓ /∈ Isel | ℓ ∈ Lsel]. Since ℓ ∈ LL,

0 < cpℓ ≤
1
2 . If Ipℓ cannot be added to Lsel, we have c(Ipℓ ) ≥

1
2

at the time st(Ipℓ ). Hence,

Pr[Ipℓ /∈ Isel | ℓ ∈ Lsel] ≤ Pr[c(Ipℓ ) ≥
1
2 | ℓ ∈ L

sel]. (14)

Next, we derive a bound on the RHS of Eq. (14). The
expectation of c(Ipℓ ),

E[c(Ipℓ ) | ℓ ∈ Lsel] =
∑

Ip

ℓ′∈Ip
ℓ
cpℓ′ · Pr[Ipℓ′ ∈ Isel | ℓ ∈ Lsel].

Following a similar induction as Eqs.(13d) ∼ (13f) (the last
inequality in Eq. (13f) will then hold due to Eq.(8b)), we
have E[c(Ipℓ ) | ℓ ∈ Lsel] ≤ 1

κ . Then, by applying Markov’s
inequality (i.e., Pr[X ≥ a] ≤ E[X]/a), we have

Pr[c(Ipℓ ) ≥
1
2 | ℓ ∈ L

sel] ≤ 1
κ ÷

1
2 = 2

κ .

Thus, by Eq. (14), we have Pr[Ipℓ /∈ Isel | ℓ ∈ Lsel] ≤ 2/κ.
Substituting the results for Iuℓ , I

p
ℓ , and Idℓ in Eq. (12), we

have Pr[ℓ ∈ SL | ℓ ∈ Lsel] ≥ 1 − 4/κ. Based on Eq. (10),
Pr[ℓ ∈ SL] ≥ yℓ · ( 1κ −

4
κ2 ). When κ = 8, ( 1κ −

4
κ2 ) reaches its

maximum 1/16. Thus, the expected value of e(SL),E[e(SL)]
=

∑
ℓ∈LL

Pr[ℓ ∈ SL]e(ℓ) ≥ 1
16

∑
ℓ∈LL

e(ℓ)yℓ = e(y)/16.

B. The SortSched Algorithm for the Heavy schedule instances

In this subsection, we present an algorithm based on par-
tial elimination ordering and a fractional local ratio method,
referred to as SortSched, to obtain a feasible scheduling
solution for LH . Based on the formulation of EMJS, we first
define a relaxed LP formulation corresponding to LH , called
HIS. When only considering LH , no two operation intervals
related to the same machine m ∈M can overlap at any time.
Thus, HIS can be defined as follows.

(HIS) max
∑

ℓ∈LH
e(ℓ) · xℓ subject to: (15)∑

ℓ∈LH ,I∗
ℓ ∈ℓ,1i(t,I

∗
ℓ )=1 xℓ ≤ 1,∀1 ≤ t ≤ ∆,∀mi ∈M, (16)

Eq. (8c), and x(ℓ) ≥ 0,∀ℓ ∈ LH . For a heavy schedule
instance ℓ of job nj , let L(ℓ) be the set of heavy schedule
instances belonging to the same job nj , and A(ℓ) be the set
of heavy schedule instances whose operation intervals (at least
one) overlap with ℓ but do not belong to L(ℓ). We first show
the following property for any feasible solution of HIS.

Proposition 1. Let x be any feasible solution to HIS. There
is a schedule instance ℓ satisfying xℓ +

∑
ℓ′∈A(ℓ) xℓ′ ≤ 6.

Proof: For two intersecting schedule instances ℓ and ℓ′

(i.e., ℓ′ ∈ A(ℓ) and ℓ ∈ A(ℓ′)), let q(ℓ, ℓ′) = xℓ · xℓ′ . Besides,
q(ℓ, ℓ) = (xℓ)

2. For an operation interval I∗ℓ ∈ ℓ, let R(I∗ℓ )
be the set of schedule instances in LH that have an operation
interval intersecting the right end of I∗ℓ (including ℓ itself).
Consider

∑
ℓ∈LH

(q(ℓ, ℓ) +
∑

ℓ′∈A(ℓ) q(ℓ, ℓ
′)). We first obtain

an upper bound of this sum as follows.
For each operation interval I∗ℓ of ℓ, we sum up q(ℓ, ℓ′) for all

schedule instances ℓ′ having at least one operation interval that
intersects with I∗ℓ (including ℓ itself). We argue that it suffices
to sum up q(ℓ, ℓ′) only for schedule instances ℓ′ ∈ R(I∗ℓ ) and
then multiply the total sum by 2. This is because if an operation
interval I∗ℓ′ of schedule instance ℓ′ intersects with I∗ℓ , we have
either ℓ′ ∈ R(I∗ℓ ) or ℓ ∈ R(I∗ℓ′). Since q(ℓ, ℓ′) = q(ℓ′, ℓ),∑
ℓ∈LH

(q(ℓ, ℓ) +
∑

ℓ′∈A(ℓ)

q(ℓ, ℓ′)) ≤ 2
∑
ℓ∈LH

∑
I∗
ℓ ∈ℓ

∑
ℓ′∈R(I∗

ℓ )

q(ℓ, ℓ′). (17)

Based on constraint (16) of HIS and the definition of q(ℓ, ℓ′),∑
ℓ′∈R(I∗

ℓ )
q(ℓ, ℓ′) ≤ xℓ ·

∑
ℓ′∈R(I∗

ℓ )
xℓ′ ≤ xℓ. (18)



Algorithm 3 Sort Scheduling (SortSched)
Input: z (an optimal fractional solution of HIS)
Output: SH

1: F ← ∅. Remove all ℓ with zℓ = 0 from LH ;
2: while L ≠ ∅ do
3: Find a schedule instance ℓ that satisfies the inequality

of Proposition 1;
4: Append ℓ to the end of F , i.e., F ← F ∪ {ℓ};
5: Remove ℓ from LH , and set zℓ = 0;
6: SH ← FracLR(F , e);

Algorithm 4 Fractional Local Ratio (FracLR)
FracLR(U , w):

1: Remove all ℓ with non-positive energy w(ℓ) from U .
2: if U = ∅, return ∅.
3: Choose the ℓ with smallest index from U .
4: Decompose the energy vector w = w1 + w2 such that
w1(ℓ

′) = w(ℓ) if ℓ′ ∈ L(ℓ) ∪ A(ℓ); otherwise, w1(ℓ
′) = 0.

5: S ′F ← FracLR(U , w2).
6: if S ′F ∪{ℓ} is a feasible schedule, return SF ≜ S ′F ∪{ℓ};

otherwise, return SF ≜ S ′F .

Using Eqs. (17) and (18), and the fact that each schedule
instance has 3 operation intervals, we can get∑
ℓ∈LH

(q(ℓ, ℓ) +
∑

ℓ′∈A(ℓ)

q(ℓ, ℓ′)) ≤ 2
∑
ℓ∈LH

∑
I∗
ℓ ∈ℓ

xℓ ≤ 6
∑
ℓ∈LH

xℓ. (19)

Therefore, we can conclude that there exists at least one
(otherwise Eq. (19) will not hold) schedule instance ℓ satisfies

q(ℓ, ℓ)+
∑

ℓ′∈A(ℓ)

q(ℓ, ℓ′) = (xℓ)
2+

∑
ℓ′∈A(ℓ)

xℓ′ ·xℓ ≤ 6·xℓ. (20)

This lemma is proved by factoring out xℓ from both sides of
the inequality of Eq. (20).

Let z be an optimal fractional solution to the LP problem
HIS. Next, we apply SortSched (Algorithm 3) to obtain
a scheduling solution with respect to LH . Since z is a
feasible solution, Proposition 1 applies. Thus, we first sort all
schedule instances ℓ with positive zℓ as shown in lines 2–5 of
SortSched. Note that we append the new schedule instance
to the end of F for every while loop (line 4), so the resulting
set F is already sorted. Next, we show that we can always
find such a schedule instance ℓ in line 3 of SortSched.

Lemma 2. Let F be the resulting set of schedule instances
from lines 2–5 of SortSched, and let ℓk denote the k-th
schedule instance in F . Let F [k] = {ℓk, ℓk+1, ..., ℓ|F|}. Then,
we have zℓk +

∑
ℓ′∈A(ℓk)∩F [k] zℓ′ ≤ 6.

Proof: By removing zℓs from z for s < k, the resulting
z is still a feasible solution to HIS. Thus, Proposition 1 still
applies to ℓk by only considering its neighbors in F [k].

After we obtained the set of sorted schedule instance F ,
we apply FracLR (Algorithm 4) to F to obtain a feasible
scheduling solution for EMJS (line 6 of SortSched), where

the e is the saved energy vector of all schedule instances.
FracLR is a recursive algorithm, and in each recursive layer
of FracLR, we decompose the saved energy of schedule
instances such that each schedule instance selection maintains
a constant local approximation ratio corresponding to the
optimal fractional solution z of HIS. Because the saved energy
of each schedule instance is updated (decomposed) in each
recursive layer, we use w(ℓ) to represent the updated saved
energy of schedule instance ℓ in each layer (e(ℓ) denotes the
original saved energy of ℓ). The initial call to this recursive
algorithm is FracLR(F , e). Next, we show that SortSched
is a 7-approximation algorithm for HIS.

Theorem 2. Suppose z is an optimal solution to HIS, and SH
is the schedule returned by FracLR in line 6 of SortSched.
Then, it holds that e(SH) ≥ 1

7 · e · z.

Proof: Let w(SF ) =
∑

ℓ∈SF
w(ℓ). Note that any schedule

instance removed by FracLR in step 1 is considered to
have zero weight. For ease of understanding, we denote the
innermost recursive layer (when set U = ∅) as layer 0, and the
outermost layer (initial call to FracLR) as layer U . Besides,
we use superscript i to denote the parameters corresponding
to recursive layer i, i.e., wi denotes the energy vector w
corresponding to recursive layer i. We prove this lemma by
showing that wi(SiF ) ≥ 1

7 ·w
i · z for all i = 0, 1, ..., U .

In the base case (i = 0), S0F = ∅ and the inductive
hypothesis holds, since the weight vector w0 is considered
to be zero. Next, we prove the inductive step.

For i ≥ 1, suppose wi−1(Si−1
F ) ≥ 1

7 ·w
i−1 · z. According

to line 4 of FracLR, wi
2 is equivalent to wi−1 before all

schedule instances with non-positive energy are removed from
U i−1. Adding non-positive component back to wi−1 will only
decrease the value of wi

2 ·z, thus, wi−1(Si−1
F ) ≥ 1

7 ·w
i−1 ·z ≥

1
7 ·w

i
2 ·z. Besides, in layer i−1, we have removed all schedule

instances ℓ with nonpositive energy wi−1(ℓ), and they will
never be added to Si−1

F , thus, we have

wi
2(S ′iF ) = wi

2(Si−1
F ) = wi−1(Si−1

F ).

Since wi
1(ℓ

i) = wi(ℓi), wi
2(ℓ

i) = 0; thus, wi
2(SiF ) = wi

2(S ′iF ).
Hence, wi

2(SiF ) = wi−1(Si−1
F ) ≥ 1

7 ·w
i
2 · z.

In i-th recursive layer of FracLR, the chosen schedule in-
stance ℓi has the smallest index in U i. According to Lemma 2
and step 3 of FracLR,

∑
ℓ′∈A(ℓ)∩Ui zℓ′ ≤ 6. Due to constraint

(8c), we have
∑

ℓ′∈L(ℓ) zℓ′ ≤ 1. Thus, wi
1 · z ≤ 7wi(ℓ). For

the returned solution SF , it either contains schedule instance
ℓ or contains at least one schedule instance in L(ℓ)∪A(ℓ). In
both cases, wi

1(SF ) is at least wi(ℓ). Thus, wi
1(SiF ) ≥ 1

7w
i
1 ·z.

Since the energy vector is decomposed in each layer such
that wi = wi

1 + wi
2, and the objective function is a linear

multiplication of w and z, we have

wi(SiF ) = wi
1(SiF ) + wi

2(SiF ) ≥ 1
7w

i
1 · z+ 1

7w
i
2 · z = wi · z.

Based on the simple induction, we have wi(SiF ) ≥ 1
7 ·w

i · z
for all i = 0, 1, ..., U . Since the initial call to FracLR (when
i = U ) is FracLR(F , e), the theorem is proved.



Theorem 3. Let S be the scheduling solution obtained by
LHJS, and S∗ be the optimal scheduling solution to EMJS.
Then, the expected value of e(S) satisfies E[e(S)] ≥ 1

23e(S
∗).

Proof: Let OPTL denote the optimal objective value of
LIS, and OPTH denote the optimal objective value of HIS.
According to Theorem 1 and Theorem 2, we have OPTL ≤
16E[e(SL)] and OPTH ≤ 7e(SH). Furthermore, based on
line 7 of LHJS, we have e(S) ≥ max{e(SL), e(SH)}. Since
any feasible solution to EMJS can be divided into a set of light
schedule instances and a set of heavy schedule instances, we
have e(S∗) ≤ OPTL + OPTH ≤ 16E[e(SL)] + 7e(SH) ≤
23E[e(S)]. Therefore, E[e(S)] ≥ 1

23e(S
∗).

Discussion. The partial elimination ordering technique em-
ployed in SortSched originates from Bar-Yehuda et al. [42],
initially devised for scheduling jobs given multiple processing
intervals on a single machine. Building upon their approach,
we tackle the more complex sub-problem (HIS): scheduling
jobs with multiple operations, with multiple unrelated candi-
dates (machines) for each operation. Because the total number
of schedule instances depends on the total number of time units
∆, LHJS is a pseudo-polynomial approximation algorithm for
offline EMJS. The offline scheduling algorithm can be used
in applications where workloads are known apriori, such as
intelligent patrol robots within factories or forest inspection
drones that have regular working schedules, moving paths, and
workloads (e.g., anomaly detection).

V. ONLINE SCHEDULING ALGORITHM FOR ONLINE EMJS

In this section, we consider online EMJS, where the sched-
uler only knows a job’s information after its release in the
system. In the online scenario, the scheduler is deployed on a
central server within the backhaul network, while other servers
and vAPs continuously update their resource utilization to
the scheduler via the wired backhaul network. When jobs are
generated, their meta-information is offloaded to the scheduler
through accessible vAPs. Given that the size of job meta-
information is typically very small, we omit its transmission
time. The scheduler is triggered whenever a job arrives.
To address online EMJS, we introduce the Load Balanced
Job Scheduling Algorithm (LBS) invoked whenever a job is
released in the system. The intuition behind LBS is to minimize
the impact of the current job’s scheduling on future job
arrivals, such that more energy can be saved for future jobs.
LBS is outlined in Algorithm 5.

Let N (tcur) be the set of jobs whose meta-information ar-
rives at the online scheduler at time tcur. Let ω = ⟨nj , Tu, Td⟩
be a ring coverage window selection for job nj , where
Tu, Td ∈ ψj are the selected offloading and downloading ring
coverage windows, respectively. Since the energy saving of job
nj , esavej , depends on the selection of ring coverage windows,
we first enumerate all possible window selection candidates
ω for all jobs nj ∈ N (tcur) and compute the corresponding
saved energy, denoted as e(ω) (lines 2–5).

Next, we consider the candidate ω = ⟨nj , Tur, Tds) with the
largest saved energy. We first determine the earliest starting

Algorithm 5 Load Balanced Job Scheduling (LBS)
Input: N (tcur), M
Output: S

1: Initialize S ← ∅,Ω← ∅, and N sel ← ∅;
2: for all nj ∈ N (tcur), Tu ∈ ψj , Td ∈ ψj do
3: ω ← ⟨nj , Tu, Td⟩;
4: if ∃tuj , tdj satisfying Eqs. (2), (3), (6), and (7) then
5: compute e(ω) as in Subsection III-B;
6: Add ω into Ω if e(ω) > 0;
7: sort Ω in non-increasing order of e(ω);
8: while Ω ̸= ∅ do
9: U ← ∅,Ω← Ω \ {ω};

10: Let ω = ⟨nj , Tur, Tds⟩ be the leftmost candidate in Ω;
11: if nj ∈ N sel then go to line 7;
12: Let tuj be the earliest time such that vAP mu is idle

during [tuj , t
u
j + duj − 1] and tuj satisfies Eqs. (2), (3);

13: Let tdj be the latest time such that vAP md is idle during
[tdj , t

d
j + ddj − 1] and tdj satisfies Eqs. (6) and (7);

14: for mi ∈Mp
j do

15: Determine the earliest and latest times feasible for
processing te and tl based on tuj , tdj , Eqs. (4), (5);
/∗ let βi[t] be the used resource fraction of mi at time t ∗/

16: for c ∈ Ci (from smallest to largest) do
17: if ∃t′ satisfying βi[t]+c ≤ 1, ∀t ∈ [t′, t′+dpj −1],

Eqs. (4) and (5) then
18: Ui = (c · dpj +

∑tl
t=te

βi[t])/(tl − te + 1);
19: U ← U ∪ {Ui}, cij ← c;
20: break;
21: if U = ∅ then go to line 7;
22: mp ← argminmi∈Mp

j
Ui;

23: Given the resource allocation cpj (line 18), let tpj be the
earliest time meeting the condition in line 16 and has
smallest max{βp[t] + cpj | t ∈ [tpj , t

p
j + dpj − 1]};

24: Update tdj to the earliest time such that vAP mds is idle
during [tdj , t

d
j + ddj − 1] and tdj satisfies Eqs. (5)∼(7);

25: Update resource allocation status for all mi ∈M;
26: S←S ∪ {⟨mu,mp,md, t

u
j , t

p
j , t

d
j , cpj⟩},N sel←N sel ∪ {nj};

time for offloading, tuj , and the latest starting time for down-
loading, tdj (lines 8–11). For each candidate server mi ∈Mp

j ,
we determine job nj’s feasible processing interval [te, tl], and
then determine the smallest resource allocation option cij such
that nj can be processed within [te, tl] without violating server
resource capacity constraint. If cij can be found, we compute
the resource usage (line 17) of server mi during [te, tl] if
job nj is processed on server m with resource allocation cij
(lines 13–19). After all candidate servers have been checked,
we choose the server with the least resource usage as the
processing server mp for job nj . Then, we determine the
earliest processing starting time, tpj , while minimizing the
server’s peak resource usage (line 22). Finally, based on tpj ,
we update tdj to the earliest downloading starting time. The
algorithm stops when the candidate set, Ω, becomes empty.



VI. EXPERIMENTAL EVALUATION

This section evaluates the performances of LHJS and LBS.
We first assess LHJS for offline job scheduling by comparing
it with an offline algorithm in the literature. Then, we evaluate
LBS for online job scheduling against its (three) variants. The
experiments were conducted on a desktop PC equipped with
an Intel(R) Xeon(R) W-2235 3.8GHz CPU and 32G RAM1.

A. Simulation Setup

We select a city area of 1200m×700m using Open-
StreetMap [43]. Traffic data are generated using SUMO [44],
simulating 675 vehicles randomly entering and leaving this
area within 600 seconds. Each AP has a height of 30m, and
its network is divided into 2 rings with coverage ranges of
0 ∼ 100m and 100 ∼ 200m. We consider a MEC with
13 APs, 6 GPU servers, and 6 CPU servers (Mu=Md=13,
Mp=12). The geographic coordinates of APs are determined
with CellMapper [45], and servers are co-located with APs.

Nvidia Jetson Nano [46] is used as ED, and the wireless net-
work data is obtained by profiling the wireless communication
between Jetson Nano and a WiFi-5 router (TL-WDR8620).
For each mi ∈ Mu, αi is set to 40 or 80 MHz. When
αi = 40 (likewise 80) MHz, the data offloading rate ηuj is
set to 33 and 23 (likewise 66 and 46.5) MBps for ring 1 and
2, respectively. For each vAP mi ∈Md, the data downloading
rate ηdj is set to 38 and 77 MBps for αi = 40 and αi = 80
MHz, respectively. We consider 3 types of CPU (Intel w2235,
10700k and 14700k, with computing units 12, 16, and 16,
respectively) and 3 types of GPU (Nvidia 2080Ti, 4060Ti and
3090 with computing units 8, 8, and 8). Notably, with the same
number of computing units, the processing time for the same
job can differ with different server hardware.

We consider 3 GPU applications (resnet101, resnet152,
vgg-16) for object detection and 1 CPU application (surf3D)
for 3D-object surface reconstruction. The input θinj of GPU
applications includes 38 images ranging from 0.01 to 1.2
MB, and that of surf3D includes 8 3D mesh objects ranging
from 0.14 to 0.6 MB. For jobs of application resnet101,
resnet152, vgg-16 and surf3D, their release times γj are
sampled from the ranges [1, 100], [1, 70], [1, 90], and [1, 50]
milliseconds (ms), respectively, and their deadlines δj are set
to 80, 110, 90, and 130 ms, respectively. The job (local and
remote) processing time and ED’s energy consumption for
local processing, offloading, and downloading are obtained
through profiling. Specifically, the power for processing CPU
applications locally ranges from 0.97 to 1.11 Watts, and that
for GPU applications ranges from 1.8 to 5.33 Watts. Besides,
the average power of Jetson Nano for data offloading and
downloading is 2.08 and 2.13 Watts, respectively.

In this experiment, we evaluate the algorithms’ performance
on jobsets with varying resource utilizations. The job deadlines
are approximately 100 ms; therefore, we use a scheduling
window of 180 ms for each jobset, since using a larger

1Experiments code is available at https://github.com/CPS-research-group/
CPS-NTU-Public/tree/RTSS2024.

scheduling window does not necessarily lead to increased
resource utilization of the jobset. The window starting times
are randomly sampled from 120 to 300 seconds from the 600
second simulation. We only consider the simulation period
where most of the vehicles are active. Jobs are then randomly
mapped to active vehicles during the scheduling window,
obtaining ring coverage windows ψj for each job by tracing
the physical position of vehicles. Given a job mapping and
computation resource allocation cj for job nj , the computation
resource utilization of job nj in a MEC is defined as U c

j =
cj · dpj/(D · d

p,max
j ), where dp,max

j is the maximum allowable
processing duration for job nj under the given mapping, and D
is the number of servers in the MEC. Considering various job
mappings and cj , let U c,min

j be the smallest utilization among
all U c

j of job nj . The total computation resource utilization of
a jobset is defined as uc =

∑
j∈N U c,min

j , and the total uplink
bandwidth utilization ub of a jobset is analogously defined.
To generate jobsets with various computation and bandwidth
resource utilization, we consider jobset sizes J from a range
of [60, 160] (in increments of 10). In total, we generate 3000
jobsets with various utilizations.

Offline Baseline. For offline experiments, we compare LHJS
with a heuristic algorithm (SortAll) derived from SortSched

and an approximation algorithm (SEARCH) proposed by Zhu et
al. [18]. The key difference between SortAll and SortSched

is that SortAll considers all schedule instances, rather than
only heavy schedule instances. SEARCH first sorts all jobs in
ascending order of deadlines and divides every consecutive
q jobs into a group; then, it applies an exhaustive search
within each group to find the optimal schedule. Unlike our
study, Zhu et al. [18] did not consider (i) job waiting time
for processing/downloading, (ii) varying computation resource
allocation, or (iii) job mapping for processing/downloading.
Therefore, SEARCH cannot be trivially extended to EMJS.
However, the exhaustive search concept in SEARCH is appli-
cable to any scheduling problem, including ours, making it a
relevant baseline. To adapt SEARCH to EMJS, we search for
every possible job mapping and operation ordering within each
group and set the group size q = 30 to ensure that SEARCH
has a runtime comparable to LHJS. Notably, neither SortAll
nor SEARCH provide an approximation guarantee for EMJS.

Online Baseline. For online experiments, we compare LBS

with its variants: LBSLate, LCEarly, and LCLate. Compared
with LBS, LBSLate schedules each job’s operation as late
as possible, LCEarly considers only the largest computation
resource allocation option for job processing, and LCLate

considers only the largest computation resource allocation
option and schedules each job’s operation as late as possible.

Metric. We use the Performance Ratio R to measure the
performance of all algorithms, where R is defined as the ratio
of the total saved energy by an algorithm to the optimal saved
energy for EMJS. Obtaining the optimal saved energy for
EMJS is challenging; hence, we utilize the optimal solution
of a relaxed LP formulation of EMJS, computed with the LP
solver Gurobi (with a timeout limit of 10 minutes), as an upper
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Fig. 3. (a) Performance ratios of LHJS, SEARCH, and SortAll under different AP-server utilization range combinations in offline job scheduling; (b)
Intermediate results of LHJS compared to the optimal saved energy under different AP-server utilization range combinations. LIS-Round (likewise HIS-
Round) is the integral solution for all light (likewise heavy) schedule instances via RandRound (likewise SortSched); (c) A comparison between the integral
solution obtained by RandRound and the approximation bound of RandRound (as in Theorem 1).

bound of the optimal to compute R. Hence, the computed R
is in fact a lower bound of the algorithm’s actual performance.

B. Offline Scheduling Experiment Result Discussion

LHJS Performance. Algorithms’ performance are illustrated
under different combinations of AP-Server utilization (i.e.,
(ub, uc)), where two different utilization ranges are employed
for both APs and servers: low ([0, 0.9)) and high ([1.1, inf)).
The performances of LHJS SEARCH, and SortAll under
various utilization range combinations are shown in Fig. 3(a),
while insights into the intermediate results of LHJS are pro-
vided in Fig. 3(b). On average, LHJS, SEARCH, and SortAll

achieve performance ratios of 69.8%, 58%, and 79.5%, re-
spectively. It is evident that LHJS consistently outperforms
SEARCH across all utilization range combinations. Additionally,
SortAll demonstrates superior performance when the com-
putation resource utilization is high. While the performance
of LHJS and SEARCH shows a monotonically increasing trend
with AP utilization and a decreasing trend with server utiliza-
tion, SortAll maintains stable performance across different
utilization range combinations.

As shown in Fig. 3(b), although the optimal fractional
solution of LIS exceeds that of HIS, the rounding loss in-
duced by RandRound is significantly greater than SortSched.
Consequently, a larger integral solution is obtained for LH

compared to LL. Thus, the performance of LHJS is heavily
influenced by the performance of SortSched. Furthermore,
since the rounding loss of SortSched is relatively small
(around 2.3%), the practical performance of LHJS is primarily
constrained by the optimal solution of HIS. When the server
utilization is low, the increasing AP utilization reduces the
allowable time for job processing, favouring a large resource
allocation option to shorten processing duration. Therefore,
the optimal solution of HIS closely aligns with the optimal
solution of EMJS, leading to enhanced performance of LHJS.
When the server utilization increases from low to high, server
resources become more scarce, and always allocating full

server resources to a job may lead to a shortage of computing
resources, resulting in a decreased optimal solution for HIS.
It is important to note that the objective value of HIS serves
as an upper bound for all scheduling algorithms that assume
full computation resource allocation. Considering the rounding
loss of SortSched (2.3%), SortSched offers a near-optimal
practical solution for scenarios where fractional computation
resource allocation is not permitted.

Based on Figs. 3(a) and 3(b), we observe that the practical
performance of LHJS is limited by only considering solutions
from either light or heavy schedule instances to achieve a con-
stant approximation ratio. In contrast, SortAll considers all
schedule instances without aiming for theoretical guarantees,
resulting in better practical performance compared to LHJS.
This also highlights that approximation algorithms can serve
as a valuable foundation for designing heuristic algorithms
with good practical performance.
RandRound Evaluation. As RandRound is a randomized

algorithm, we also evaluate its actual rounding performance.
We conduct experiments with 900 jobsets featuring various
resource utilization combinations and sizes. For each jobset,
utilizing the computed optimal fractional solution of LIS, we
execute RandRound 50 times and record the resulting integral
solutions. Among these 50 integral solutions, we select 4
results (maximum, minimum, average, and 1st quartile) and
illustrate the ratios of these results to the approximation bound
(Theorem 1) in Fig. 3(c). A higher ratio indicates better prac-
tical performance of RandRound. The 1st quartile denotes that
25% of the 50 integral solutions possess saved energies lower
than the 1st quartile. Observably, the ratio corresponding to the
1st quartile of nearly all jobsets surpasses 1, indicating a 75%
probability that the integral solution obtained by RandRound

exceeds its theoretical bound. Additionally, the variance of the
random rounding diminishes with increasing jobset size.
LHJS Scalability. To evaluate the scalability of LHJS, we

consider two additional MECs with larger scales: medium-
scale MEC (with 16 APs and 18 servers) and large-scale



Fig. 4. Runtime analysis of LHJS for different scales of MEC

Fig. 5. Performance ratios of LBS and its variants under different AP-server
utilization range combinations for online job scheduling

MEC (with 21 APs and 24 servers). For each scale of MEC
(including the base MEC which we now denote as small-scale
MEC), we generate 100 jobsets with total resource utilizations
uc and ub ranging from 0.9 to 1.1. Specifically, for small,
medium, and large-scale MECs, each generated jobset contains
80, 140, and 200 jobs, respectively. In Fig. 4, we present the
average runtimes of LHJS for different scales of MECs. The
subfigure “total” represents the overall runtime of LHJS, while
the other five subfigures depict the runtime of individual steps
of LHJS (i.e., “gen instance” denotes the time taken to define
all schedule instances). It’s evident that more than 10% of the
runtime is devoted to defining schedule instances, while over
85% of the time is spent on solving the LP formulations LIS
and HIS. The time spent on LP rounding (RandRound and
SortSched) accounts for less than 0.1% of the total runtime.
Furthermore, the runtime of LHJS notably increases with the
growing number of APs and servers in the MEC. This increase
is primarily attributed to the significant rise in the number of
schedule instances with the expansion of system scales and
jobset sizes, posing a considerable challenge for the LP solver.

C. Online Scheduling Experiment Result Discussion

LBS Performance. In Fig. 5, we present the performance of
LBS and its variants under different AP-Server utilization range
combinations for the base MEC (small-scale). On average,
LBS achieves a performance ratio of 83.2% compared to
the offline optimal solution of EMJS, surpassing its variants
LBSLate, LCEarly, and LCLate by 5.2%, 23.7%, and 33.7%

Fig. 6. Runtime of LBS under different jobset sizes and MEC scales

respectively. Notably, the result highlights the significance
of the computation resource allocation strategy in online
scheduling compared to the policy for scheduling each job’s
operation (i.e., earliest or latest). Additionally, the performance
gap between LBS and LCEarly widens as server utilization
increases, which may stem from inefficient resource utilization
with a large resource allocation option and the potentially
significant impact of such an allocation on future job arrivals.
LBS Scalability. Fig. 6 illustrates the average runtime of LBS

across different jobset sizes (in small-scale MEC) and varying
MEC scales. It is evident that the LBS runtime increases almost
linearly with the increase of jobset size. Despite considering
various resource allocation options in LBS, its runtime when
compared to LCEarly and LCLate is only marginally higher
(less than 15 ms). Furthermore, the total runtime of LBS

is merely 27 ms for a jobset size of 160. Considering the
substantial performance improvement, this slight increase in
runtime is justifiable. Moreover, even with a large-scale MEC
and jobset size 200, the runtime of LBS remains under 100
ms, underscoring its practical viability.

VII. CONCLUSION

This paper addressed a deadline-constrained job mapping
and resource management problem, EMJS, in MEC with both
communication and computation contentions, which jointly
considered job scheduling, computation resource allocation,
and ED mobility. For the offline EMJS, we introduce a
pseudo-polynomial approximation algorithm named LHJS with
a constant approximation ratio. For the online EMJS, we
propose an online scheduling algorithm named LBS with
practical runtimes. Experimental results show that both LHJS

and LBS significantly outperform their baseline algorithms,
and highlight that allocating full server resources to each job
during processing may not be an effective strategy, particularly
when the server resource demand of the jobset is high.

In this work, we considered a sequential data communica-
tion model (OFDM) in the wireless network. With the recent
OFDMA data communication model in 5G, the subcarriers
in each wireless channel can be assigned to different users
simultaneously, leading to a similar resource allocation model
as the server. In future work, we plan to explore approximation
algorithms for job scheduling in the OFDMA-enabled MEC.
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